Threshold Boolean Form for Joint Probabilistic Constraints with Random Technology Matrix
نویسندگان
چکیده
منابع مشابه
A Counterexample to “Threshold Boolean form for joint probabilistic constraints with random technology matrix”
Recently, in the paper “Threshold Boolean form for joint probabilistic constraints with random technology matrix” (Math. Program. 147:391–427, 2014), Kogan and Lejeune proposed a set of mixed-integer programming formulations for probabilistically constrained stochastic programs having random constraint matrix and finite support distribution. We show that the proposed formulations do not in gene...
متن کاملThreshold Boolean form for joint probabilistic constraints with random technology matrix
We develop a new modeling and exact solution method for stochastic programming problems that include a joint probabilistic constraint in which the multirow random technology matrix is discretely distributed. We binarize the probability distribution of the random variables in such a way that we can extract a threshold partially defined Boolean function (pdBf) representing the probabilistic const...
متن کاملProgramming under Probabilistic Constraints with a Random Technology Matrix
Probabilistic constraint of the type P (Ax ≤ β) ≥ p is considered and it is proved that under some conditions the constraining function is quasi-concave. The probabilistic constraint is embedded into a mathematical programming problem of which the algorithmic solution is also discussed.
متن کاملSupport vector regression with random output variable and probabilistic constraints
Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...
متن کاملsupport vector regression with random output variable and probabilistic constraints
support vector regression (svr) solves regression problems based on the concept of support vector machine (svm). in this paper, a new model of svr with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2013
ISSN: 1556-5068
DOI: 10.2139/ssrn.2325180